Contents

List of Figures ... xi
List of Tables .. xiii
Preface ... xv

PART I. MAN'S PLACE IN THE BIOSPHERE

Chapter 1. Environmental Properties and Processes 3
 A. Perspective ... 3
 B. Key Processes in the Biosphere 5
 C. Man's Use of the Environment 7
 D. Man's Role within the Biosphere 12

Chapter 2. The Role of Science in Environmental Policy 17
 A. Steps Towards a Policy 17
 B. The Recognition of Problems 19
 C. The Evaluation of Problems 22
 D. Information and Communication Problems 27

PART II. THE MID-TERM PROGRAMME OF SCOPE AND THE ENVIRONMENTAL ACTIVITIES OF ICSU

Chapter 3. Environmental Concerns ... 31
 A. Introduction ... 31
 B. Biogeochemical Cycles 33
 1. Introduction 33
 2. Nitrogen, phosphorus, and sulphur 36
 a. Man and biogeochemical cycles: impacts and problems 36
 b. Flow charts for nitrogen, phosphorus, and sulphur 38
 c. Nitrogen flow chart and comments 39
 d. Implications of man's activity for the nitrogen cycle 42
 e. The nitrogen cycle: trends 43
 f. Phosphorus: flow chart and comments 43
 g. Phosphorus: implications of man's activity 45
 h. Phosphorus: future trends 46
 i. Sulphur: flow chart and comments 46
 j. Sulphur: first global budget 48
k. Sulphur: second global budget .. 50
 l. A regional sulphur budget for Northwest Europe 51
 m. Sulphur: trends and implications 52
 n. Further research on nitrogen, phosphorus, and sulphur cycles .. 52

3. Carbon ... 55

C. Climate ... 58
 1. Introduction ... 58
 2. World climate: past and present 59
 a. Types of climatic data 59
 b. Some properties of climatic data 59
 c. The natural variability of climate 60
 d. Man’s impact on climate 61
 3. The prediction of climate .. 62
 a. Statistical correlations 62
 b. Numerical models ... 64
 4. Some current research activities 67
 a. Introduction .. 67
 b. The Sahelian drought 68
 c. Stratospheric ozone .. 69
 d. The carbon dioxide problem 71
 5. The impact of climate on man 71

D. Pollutants in the Environment 75
 1. Background ... 75
 2. The concepts of ecotoxicology 77
 a. Amounts manufactured and released 78
 b. Persistence in the environment 78
 c. Transport in the environment 78
 d. Metabolism in the receptor 79
 e. Dose-effect relations 79
 f. Assessment of environmental impact 80
 g. Analysis .. 81
 E. Ecosystem Processes .. 81
 1. The analysis and modelling of successional change 83
 a. Present concepts regarding ecological succession 83
 b. Methods available for modelling and predicting successional patterns 85
 c. Application to management of natural and near-natural ecological systems 87
 d. Conclusions and recommendations 90
 2. Irrigation and drainage of arid lands 91
 a. Irrigation and world food 91
 b. Physical water efficiency in crop production 92
 c. Water and salt balance in the root zone 95
 d. Other impacts .. 97
 e. Conclusions and recommendations 98
B. Man and Environment .. 148
C. Actions in the Future .. 149
D. Specific Actions ... 149
E. Responsibilities of the Scientific Community 152

Appendixes
Appendix A Literature cited 155
Appendix B Activities of ICSU unions and associated scientific groups .. 170
Appendix C Steering Committee and Project Chairmen in the SCOPE
 Mid-term Programme 197
Appendix D Methyl mercury: critical groups and sources of intake ... 199

Index ... 215
List of Figures

1. Matrix classification of environmental issues 32
2. The global nitrogen cycle 40
3. Preliminary global phosphorus flow chart 44
4. The first global sulphur cycle 47
5. The second global atmospheric sulphur cycle 51
6. Diagrammatic model of the global carbon cycle 56
7. Annual production of CO₂ from fossil fuels and cement ... 57
8. Correlation of meteorological observations 60
9. Schematic illustration of the coupled atmosphere-ocean-ice-land surface-biomass climatic system 65
10. Carbon dioxide concentration 72
11. Three models of the mechanisms producing the sequence of species in succession 84
12. A schematic representation of the role of ecologists in producing ecosystem models and in giving advice for management purposes ... 88
13. Model of the irrigation return flow system 93
14. The distribution and movement of water in the ground ... 94
15. Matrix showing the phases and activities occurring in environmental problem-solving 107
16. Environmental problem-solving model 107
17. Aquatic food chain for mercury and methyl mercury 200
List of Tables

1. Global inventories of nitrogen .. 41
2. Sulphur budget for Northwest Europe 47
3. Chronology of recognition and response related to the problems posed by halocarbons .. 111
4. Comparative risks, outlays, and implicit life valuations 128
5. A structure for risk assessment .. 129