Index

Acid rain (see Sulphate precipitation)
Actinia, 186
Activated complex, 5
Adirondack mountains, USA, 21, 215
Aerodynamic sizing, 140
Aerosol, 36, 144, 399
Africa, 69, 88, 228, 409–14
African rivers, 228
Akansk-Achinsk, USSR, 155
Alberta, Canada, 140–1, 144, 154–5, 204, 247–8, 274–5, 278, 280, 284 (Fig.), 303, 309–31
Algae, 285, 289
Algal mats, 370, 382
Algoma, Canada, 199
Algonquin Provincial Park, Canada, 214
Altai, 88
Amazon river, 224
Amino acids, 268
Amu-Daria syncline, 111, 244
Analyses
aerodynamic sizing, 140, 317
Kiba reagent, 184
O-isotopes, 55–9
sample pretreatment, 43–8
scanning electron microscopy, 141, 142 (Fig.), 316
sulphur
atmosphere, 137–41, 312, 344–5
coal, 47
H₂S in water, 344–5
petroleum, 47
soil, 268–9
trace-S, 184
volatile fluxes, 117
Animals, 185–8, 299–303
Antarctica, 152
Aquatic organisms, 183–9
Arabia, 99
Archean, 14
Arctic, 151, 167, 300
Argonne, Illinois, 34
Arnavir, West Caucasus, 103
Asia, 69
Asse salt dome, Germany, 237
Astrakhan gas-condensate deposits, 112
Athabasca oil sands, 102
Atlantic Ocean, 152
Atmosphere, 34–7, 133–76, 383–97, 312–18, 331–43
aerodynamic sizing, 140
aerosols, 36, 144
anthropogenic-S, 147–9, 358–60, 383–97
biogenic sulphur, 144–7, 163–7, 242–51, 344–7
carbon disulphide, CS₂, 133–4, 165
carbonyl sulphide, COS, 133–4, 165
dimethyl sulphide, DMS, 17, 133–4, 165
dimethyl disulphide, DMDS, 133–4
dispersion, 168–71
dustfall, 400–1
electron microscopy, 142 (Fig.)
emissions, power plant, 331–339, 400–2
geothermal areas, 246–8
gypsum dust, 68
high volume sampling arrays, 140
hydrogen sulphide, 17, 133–5, 154–5, 165, 344–7
methyl mercaptan, 133–4
monitoring with vegetation, 142
O-isotopes
sulphate, 34–7, 157–58
Atmosphere
O-isotopes (cont'd)
sulphur dioxide, 37
water, 158
particle size, 140
particulates, 315-17
rain and snow, 150-5, 162
regional balance 159-62
relation to concentrations, 149,
153-7, 314
sampling of S-compounds, 44, 137-41
sea spray, 17
springs, 248-50
sulphate, 16, 34-7, 334-6
sulphur chemistry, 134-7
sulphur compounds, 133-8
sulphur dioxide, 37, 133-7, 154-5,
313-16, 333-8, 400
sulphur dust, 135, 290
incorporation by plants, 290-6
incorporation by soil, 290-6
S-isotopes
biogenic-S, 17, 163-7
H2S, 154-5, 344-7
H2SO4, 143
particulates, 141, 316-17, 334-7
rain, snow, 150-5, 162, 352-5
relation to concentration, 149,
153-7, 314
relation to wind direction, 315
SO2, 139, 141, 154-5, 312-16,
332-8
sulphur trioxide, 332
sulphuric acid, 143, 299
transport, 168-71
volcanic emissions, 9, 16, 116-25
Australia, 69, 88, 99, 271, 303, 385,
371-98
Azov Sea, 219

Baikal, USSR, 200
Balkhass, USSR, 200
Baltic Sea, 222
Balzac, Canada, 155
Barite
conversion to Ag2S, 44
conversion to SO2, 51
O-isotopes, 38, 86, 249
radioactive sinter deposits, 38, 249
reduction with graphite, 56
S-isotopes, 67 (Fig.), 86, 249

Bark, entrapped sulphur, 325
Basic sills, S-isotopes, 8 (Fig.)
Batch process, 6
Beggiatoa, 289
Benthic biomass, 189
Big Horn basin, USA, 244
Biogenic emissions
ocean, 146-7, 164 (Fig.)
springs, 147, 242-51
Biological sulphur cycle, 9
Biosphere, 282-311
Black Sea, 14, 185, 203, 217
Blood, 300
Bogs, 95
Boling, 92
Boraitotto, Italy, 91
Brahmaputra, 228
Brisbane, Australia, 303
Broken Hill, Australia, 90
Buggingen deposits, 86

Calgary, Canada, 154-5
California, 274, 284 (Fig.)
Cambrian, 82, 101
Canada, 82, 147, 154, 248, 274, 286
(see also Alberta, Ontario)
Canberra, Australia, 303
Cañon Diablo, 65
Cape Reykjanis, Iceland, 123
Carbon/sulphur ratio, plants, 282
Carbon-bonded S, 268
Carboniferous, 102, 243
Carbonyl sulphide, COS, 133-4, 146,
165
Cartagena, Spain, 90
Caspian Sea, 220
Casteliano, 88
Caucasus, 88, 151
Cenozoic oils, 105
Central Europe, 88
Cephalopoda, 184
Chemosynthetic autotrophic organisms,
12, 301
Chromatium vinosum, 13
Chromatium sp., 12
Chvaletice, Czechoslovakia, 147, 155,
399
<table>
<thead>
<tr>
<th>Index</th>
<th>433</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cladophora, 185</td>
<td>East Siberian platform, 100</td>
</tr>
<tr>
<td>Claus process, 311</td>
<td>Edmonton, Canada, 154, 312</td>
</tr>
<tr>
<td>Closed system, 7</td>
<td>Edwards aquifer, Texas, 239</td>
</tr>
<tr>
<td>Coal</td>
<td>El-Chichon, Mexico, 117, 125</td>
</tr>
<tr>
<td>extraction of sulphur, 47</td>
<td>Elemental-S</td>
</tr>
<tr>
<td>low sulphur, 99</td>
<td>atmosphere, 135, 290, 309, 325</td>
</tr>
<tr>
<td>S-content, 399</td>
<td>deposits, 91-5, 411</td>
</tr>
<tr>
<td>S-isotopes, 15 (Fig.), 18, 96-9, 99, (Fig.), 100, 327, 332, 335, 383-7, 400</td>
<td>entrapped in bark, 325</td>
</tr>
<tr>
<td>S-isotopes, emissions, 147, 154-5, 326, 335, 401</td>
<td>incorporation by plants, 290-6</td>
</tr>
<tr>
<td>Codium vermisla, 185</td>
<td>incorporation by soil, 290-6</td>
</tr>
<tr>
<td>Coenzyme A, 187</td>
<td>manufacture, 309-11, 325</td>
</tr>
<tr>
<td>Colorado River, 227-8</td>
<td>oxidation, 279, 309-11</td>
</tr>
<tr>
<td>Connecticut, USA, 199, 203</td>
<td>S-isotope fractionation during oxidation, 279</td>
</tr>
<tr>
<td>Continental seas, 217-24</td>
<td>S-isotopes, 67 (Fig.), 91-5, 411</td>
</tr>
<tr>
<td>Copper–molybdenum deposits, 89 (Fig.)</td>
<td>springs, 248</td>
</tr>
<tr>
<td>Copper–nickel deposits, 88 (Fig.), 392-4, 398</td>
<td>Ellesmere Island, Canada, 38, 199, 203</td>
</tr>
<tr>
<td>Corrosion of monuments, 402-4</td>
<td>Enriched S-isotopes</td>
</tr>
<tr>
<td>Coverage, 296</td>
<td>potential for atmospheric studies, 168</td>
</tr>
<tr>
<td>Cretaceous, 82, 245, 274, 318</td>
<td>Enteromorpha, 185</td>
</tr>
<tr>
<td>Crossfield, Canada, 141, 148</td>
<td>Epiphytic lichens, 142</td>
</tr>
<tr>
<td>Crude oil, (see petroleum)</td>
<td>Equilibrium isotope effects, 2</td>
</tr>
<tr>
<td>Crust-mantle, 65</td>
<td>Eschka, 47</td>
</tr>
<tr>
<td>Crustal contamination, 66</td>
<td>Etna, 118</td>
</tr>
<tr>
<td>Cucumis sativus, 297</td>
<td>Europe, 69</td>
</tr>
<tr>
<td>Cyanobacterial mat, 370, 382</td>
<td>Evaporites, isotopic composition, 68-87</td>
</tr>
<tr>
<td>Cysteine, 187</td>
<td>age curves, 82-6, 237 (Fig.)</td>
</tr>
<tr>
<td>Cystine, 187, 282, 299-300</td>
<td>marine, 15, 58, 68-86, 237 (Fig.)</td>
</tr>
<tr>
<td>Cystine kidney stones, 300</td>
<td>non-marine, 86</td>
</tr>
<tr>
<td>Czechoslovakia, 66, 150, 248, 399ff</td>
<td>reservoir estimate, 68</td>
</tr>
<tr>
<td>Deep sea hydrothermal vents, 301</td>
<td>Feathers, 301-3</td>
</tr>
<tr>
<td>Desulphotomaculum, 144</td>
<td>Filter packs for atmospheric sampling, 44</td>
</tr>
<tr>
<td>Desulphovibrio desulphuricans, 10, 144</td>
<td>Finland, 88</td>
</tr>
<tr>
<td>Determination of δ18O of water, 58</td>
<td>Fisherman Bay, Australia, 379, 423</td>
</tr>
<tr>
<td>Devonian, 82, 102, 109, 242</td>
<td>Flue gas, 335, 399</td>
</tr>
<tr>
<td>Dimethyl disulphide, DMDS, 133-4, 146</td>
<td>Fly ash, 328</td>
</tr>
<tr>
<td>Dimethyl sulphide, DMS, 17, 133-4, 146, 165</td>
<td>Flybye Springs, NWT, Canada, 250</td>
</tr>
<tr>
<td>Directional array sampling, 315</td>
<td>Flysch waters, 249</td>
</tr>
<tr>
<td>Dissolved organic sulphur, 204, 205 (Fig.), 318</td>
<td>Food webs, 299-303</td>
</tr>
<tr>
<td>Dustfall, 400-1</td>
<td>Forest soils, 146</td>
</tr>
<tr>
<td>East Transbaikal, 89</td>
<td>Formation waters, 110 (Fig.), 242-5</td>
</tr>
<tr>
<td>East Pacific, 198</td>
<td>Fossil fuels, 15-16, 15 (Fig.), 95-116, 412 (see also Coal, Petroleum, Sour gas)</td>
</tr>
<tr>
<td>East Siberian platform, 100</td>
<td>Fumaroles, 66, 117, 121-4</td>
</tr>
<tr>
<td>Gazli, Middle Asia, 103</td>
<td>Gaurdak deposit, USSR, 94</td>
</tr>
</tbody>
</table>
Geothermal areas, 245-7
Glacial tills, 233
Glutathione, 187
Gracefield, New Zealand, 157
Granite, S-concentration, 65
Great Salt Lake, 147, 154
Great Lakes, 151, 161 (Fig.), 199, 204, 212-15
Great Slave Lake, Canada, 247
Green Lake, Fayetteville, USA, 199
Greenhow, England, 90
Ground waters, 38, 177, 229-42, 277, 422-3
Groundwater, 229-42, 360-71
sulphate
O-isotope composition, 232-42, 366-71
S-isotope composition, 232-42, 366-71
Gulf Coast oils, 108
Gypsum, 68, 149, 379
Hair, 300
Harz Mountains, 95
Helmstedt, Germany, 96
Heron Island, Great Barrier Reef, 300, 303
HI-reducible S, 268-9
High-volume sampler, 140, 337
Higher animals, 299-303
Huang He, 228
Hubbard Brook, New Hampshire, USA, 147
Humic acids, lake sediments, 213-14
Hydrogen sulphide
abiogenic, in sediments, 198
atmosphere, 17, 133-4, 137, 344-7
biogenic, 15, 17, 144-7, 163-5, 250, 344-7
Black sea, 218
emission rates, 17, 345
goetheral, 245-6
oxidation, 134-5, 143, 347
sour gas deposits
Astrakhan, 113
Orenburg, 111, 113
Western Canada, 112 (Fig.)
S-isotopes, 154-5
biogenic, 15, 17, 144-7, 163-5
geothermal, 245-7
hydrocarbon deposits, 109-16
volcanic, 122-4
tidal flats, 344-7
volcanic, 122-4
Hydrology (see Hydrosphere)
Hydrosphere, 37, 177-266 (see also Continental seas, Groundwater, Lakes, Rivers)
bogs, 95
dissolved organic-S, 318
formation waters, 110 (Fig.), 242-5
goetheral waters, 245-7
Kuwait, 360-71
Hydrothermal vents, 301
Iceland, 123
Igneous rock S-isotopes, 8 (Fig.)
India, 247, 405-8
Indian Ocean, 185
Indus, 228
Iran, 99
Iraq, 91-2, 99
Isotope effects (see also Oxygen-isotope fractionation, Sulphur-isotope fractionation)
equilibrium, 2
equilibrium constant, 3
fractionation factor, 6
kinetic, 5
partition functions, 3
Israel, 150, 161
Italy, 91
Japan, 88, 162, 246, 287, 343-61
Járosite, 250, 299
Jordan Rift Valley, 150
Jurassic, 82
Karelia, 88
Karst lakes, 20
Kazakhstan, 89, 151
Kazakhsthan steppe, USSR, 20
Keystone, USA, 155
Kiba reagent, 46
Kidney stones, 300
Kilauea, 118, 120, 245
Kinetic isotope effects, 5
Kirgizia mountains, USSR, 151
Kola Peninsula, USSR, 151
Krafla, 245
Kuril Islands, 123
Kunashir Island, 123
Kurume, 150
Kuwait, 99, 360–71
Labadie, USA, 155
Lacq, France, 110
Ladoga, USSR, 200
Lagoons, 146
Lake Tanganyika, 200
Lake Vanda, Antarctica, 38, 203
Lake Chernyi Kichiyer, USSR, 203
Lake Sakovo, USSR, 203
Lake Bolshoi Kichiyer, USSR, 203
Lake Kuznechikha, USSR, 203
Lake Kinneret, 200
Lake Creteil, 200
Lake Kononyer, USSR, 203
Lakes, 20, 38, 198–217
eutrophic, 205–8
humic acid, 213–15
karst, 20
meromictic, 208–11
oligotrophic, 204–5
oxygen isotope composition of sulphate, 205
sediments, 211–17
water column, 198, 203
Lead sulphide ores, (see Ore deposits)
Lena River, USSR, 283
Li-Al-H4, 46
Lichens, 320, 323
Lignite, 95
Linsley Pond, USA, 199
Lithosphere, 38, 65–132
Lone Pine Sanctuary, Queensland, Australia, 300
Long Island, USA, 155
Lublin, Poland, 150, 157
Mackenzie River, 20, 246, 317
Madison formation, 111
Mafic rocks S-concentration, 65
Mambray Creek, South Australia, 190, 379
Mangrove, 185
Marine sulphate, (see Evaporites, Ocean)
Marine animals, 185–8
Marine sedimentary cycle, 14
Marsh sediments, 180–93
Mass spectrometry memory effects, 54
oxygen isotopes, 59
sulphur isotopes, 54
Megggen, 88
Mekong, 228
Mendelev volcano, 123
Meteorites, 65
Methionine, 280, 297
Methyl mercaptan, CH3SH, 133–4, 146
Mexico, 91
Microbial biomass, 269
Middle East, 69, 100
Mikawa Bay, Japan, 147
Miocene, 82
Mishrak, Iraq, 92
Mississippi River, 228
Mississippiian, 244
Miziskaya platform, 102
Modelling of uptake of industrial S, 320
Mollusc, 184
Mongolia, 89
Monkeopp formation, 82
Montana, 102
Monuments, corrosion, 402–4
Moscow, 151
Moss Bluff, USA, 91
Mosses, 142
Mt Ontake, 347
Mt Tom Pond, USA, 199, 203
Mt Agung, 147
Mt St Helens, USA, 118, 121
Nagoya, 150, 353–7
Nails, 300
Nairne, Australia, 88
Native sulphur, 18, 91–5 (see also Elemental-S)
Natural oil seeps, 108
New Zealand, 151, 245, 279, 284
(Fig.), 285–6
New Haven, USA, 154
New York City, USA, 155
Newport, California, USA, 190
Nigeria, 410–16
Nitrogen/sulphur ratio, plants, 282
Norlinger Ries, Germany, 96
Norman Range, Canada, 38
North America, 69, 91 (see also Canada, United States of America)
North Dakota, 102
Northport, USA, 155
Northwest Territories, Canada, 286
Novgorod, 151
Novodimitrovskaya, USSR, 91

Ocean (see also Evaporites, Sulphate)
aerosols, 144–5
atmosphere, 144–147, 152 (Fig.)
biogenic sulphide, 145–6, 164 (Fig.)
carbonate, isotope composition, 251
emissions, 17
littorals, 17, 146
precipitation, 152
sediments, modern, 189–98
spray, 17, 152
sulphate, 14, 37, 178–183
Ochoan, 82
Oder, 228
Oil shales, 391, 416
Oil, (see Petroleum)
Oligocene, 82
Onega, USSR, 200
Ontake, Japan, 120
Ontario, Canada, 21, 102, 143, 155, 198–9, 202, 212–15, 274, 320
Open system, 7
Ordovician, 82
Ore deposits, 18, 87–91
Australia, 80, 391–7
India, 405–8
S-isotopes, 67 (Fig.)
Cu-Mo, 89 (Fig.), 392–4
Native-S, 91–5, 411
Pb-Zn, 15, 90 (Fig.), 392–6
Orenburg gas-condensate deposit, 111
Organic-S, S-isotopes, 67 (Fig.)
Oxygen-isotope fractionation
exchange during sulphate reduction, 239–42
exchange reactions, 28–32
SO₂-water, 28–32
sulphate crystallization, 33
sulphate reduction, 33
sulphate-water, 28
sulphide oxidation, 32
Oxygen-isotopes (see also Sulphate)
O₂, atmosphere
water, 34–5, 365–9
urine, 301

Pacific Ocean, 152
Paige Mountain, NWT, Canada, 147, 154, 248

Parr bomb, 45, 47
Particulate sulphur, 138, (see also
Elemental sulphur, Atmosphere)
Peat, 16, 95 (see also Coal)
Pedosphere, (see Soil)
Pennsylvania, USA, 332
Pennsylvanian, 102, 244
Perch Lake basin, 232
Permian, 82, 102, 243
Persian Gulf, 378
Peru, 89
Petroleum
contamination in sediments, 108
extraction of sulphur, 47
mean S-isotope composition, 107
S-isotopes, 15 (Fig.), 18, 100–108, 332–43, 387–91
Phaeophyta, 189
Phanerozoic, 68
Phosphoria formation, 111
Photosynthetic organisms, 12
Phytobenthos, 188
Phytoplankton, 146, 188
Pisa, 150, 160
Plants (see Vegetation)
Plastic Lake watershed, 232
Pleistocene, 82
Poland, 91, 150
Polar bears, 187, 300
Polychaeta, 184
Polysaccharide sulphate, 45
Polysiphonia subilifera, 185
Pore water sulphate, 193, 203
Power plants
Chwaletice, Czechoslovakia, 399
carbon, 147, 155, 332, 342, 401
emissions, S-isotopes, 400–1
Kansk-Achinsk, USSR, 326–8
Northeastern USA, 331–43
Prague, 154
Proterozoic, 100
Prudhoe Bay, Alaska, USA, 108
Pyrite
abiogenic, 198
carbon, 399–400
lake sediments, 254
ocean sediments, 197–8
oxidation, 12–13, 33
S-isotopes, 67 (Fig.), 88 (Fig.)
volcanic ash, 247
Queechy Lake, USA, 199, 203
Radioactive-S, 190
Rain, 18–19, 365, 399
Ram River, Canada, 320
Rammelsberg, 88
Rayleigh distillation equation, 210
Reactions
first order, 12
multi-step, 6, 12
unidirectional, 12
Red Sea, 198, 223
Red Deer, Canada, 154
Regional balances of atmospheric sulphur, 159–62
Rhine, 228
Rhodophyta, 189
Rhodopseudomonas sp., 13
Rice-fields, 146
River Niger, 227
River basins, 228
Rivers, 20, 224–9
O-isotopes, 25
sulphate concentration, 227–9
S-isotope variations, 38, 225–9,
(Fig.), 283
Rock–water interactions, 230
Rot event, 85
Rotliegend salt deposits, 86
Russian platform, 100
Sabkhas, 369
Sakhalin, 150
Salmon, 186
Salt marshes, 146
Salt crystals on leaves, 298
Salt Lake City, Utah, USA, 158
Salt domes, 92
Santa Lucia, 88
Satsuma Iwo-Jima group, 122
Scanning electron microscopy, 142
(Fig.), 316
Sea spray, 144–6
Seals, 187, 300
Sediments
distribution of sulphur compounds, 193
lake
anthropogenic influence, 211–17
S-isotope composition, 211–17
marsh, 190
ocean, modern, 189–8
pore water sulphate, 193, 203
sulphide mineral formation, 197–8
sulphur-isotope balance, 195–7
sulphur-mass balance, 196–7
sulphur-isotope composition, 193
Selenium/sulphur ratio, 296, 302, 325
Serech River, Italy, 38
Sernoye (reservoir), USSR, 200
Shark Bay, Western Australia, 372, 423
Shatt al Arab, 228
Shikote Alin, 65
Shimoda (Japan), 88
Showashinzan volcano, Hokkaido, 122
Shrimp, 187
Siberia, 150
Siberian platform, 89
Sicily, 93
Silurian, 102
Skyreholme, England, 90
Slotted cascade impactor, 140
Soil, 267–82
horizons, 323–4
O-isotopes, 277
sources of S, 271–2
S-forms, 267–71
C-bonded, 268
HI-reducible, 268
inorganic, 267
organic, 268–71
transformations of S, 271
transfer of S to, 280–2
sulphate, 267
S-isotopes, 272–82, 291 (Fig.)
318–24, 326–71
Solar Lake, 200, 203
Solfatara, 117, 121–4
Sour gas
Alberta, 16, 122 (Fig.), 309–11
Astrakhan, 112–13
emissions, 312–26
Orenburg, 111, 113
processing, 309–11
S-isotopes, 109–16, 309–11
Souris River formation, Canada, 82
South America, 69, 91
Soviet Union (see USSR)
Soxhlet extraction, 46
Spencer Gulf, South Australia, 372, 422
Spindleton, 92
Springs, 146, 247–50, 289 (Fig.), 298
barite sinter, 249
Springs (cont'd)
 biogenic emissions, 250
cave development, 248
jarosite depositing, 249
sulphate
 O-isotopes, 248-9
 S-isotopes, 247-9
sulphide
 S-isotopes, 248-9
travertine depositing, 248

Sulphate
 assimilation, 10, 285-8
 concentration
 formation waters, 293-6
 lakes, 199-211
 rivers, 225-9
 seas, 217-25
 sediments, 193-5
 crystallization, 33
 geothermal, 245-7
 marine, 14-15, 68-86
 ocean (see marine)
O-isotopes, 37-8, 225
 aerosol, 36-7
evaporites, 84 (Fig.)
groundwater, 232-42
meromictic lakes, 209
rain, snow, 34-7, 150-9, 366-71
soil, 277
springs, 38, 247-9
urine, 301
pore water, 193, 203
precipitation, 8, 150-67, 352-61, 366, 400-2
reduction
 algal mats, 370
 assimilatory (see sulphate assimilation)
bacterial, 10-11, 192
chemical laboratory, 5, 32, 50-1
dissimilatory, 11
intensity in marches, 189-93
intensity in sediments, 189
light hydrocarbon gases, 113
mixture, 44
O-isotope fractionation, 33, 239-42
S-isotope fractionation, 5, 10-11, 239-42
thermochemical, 112-13
S-isotopes, 14, 18-20
aerosol

eutrophic lakes, 205-8
evaporites, 5, 68-86, 83, (Fig.), 85
 (Fig.), 367
formation waters, 242-5
geothermal, 245-7
groundwater, 231-42, 365-6
lakes, 199-217
meromictic lakes, 208-11
minerals, 367
oligotrophic lakes, 203-4
rain, snow, 8, 150-67, 352-61, 365, 400-2
rivers, 38, 225-9, 282
seas, 217-25
springs, 247-9
terrestrial, 236 (Fig.)
vulcanic ash, 348
Stratosphere, 147, 154
Streams (see rivers)
Sudbury, Canada, 21, 143, 155, 198, 202, 215

Sulphide (see also Hydrogen sulphide)
 abiogenic, in sediments, 198
 mineral formation, sediments, 197-8
 oxidation, 12-13, 33, 309, 348
 S-isotopes (see also Ore deposits)
 in lignite, 96
 ocean sediments, 193-6
 uptake by plants, 289
Sulphide ores (see Ore deposits)
Sulphur isotope exchange reactions, 4
Sulphur dioxide, SO_2
 atmosphere, 133-41, 154-5, 312-16, 332-8, 403
 exposure threshold for plants, 290
 geothermal, 245
 heterogeneous oxidation, 136
 homogeneous oxidation, 136
 oxygen isotope composition, 37
 preparation for sulphur isotope analyses, 48-53
 purification, 52
S-isotopes
 atmosphere, 139, 141, 154-5, 312-16, 332-8
 dependence on wind, 138-40, 315-16
 sour gas processing, 309-11
Sulphur dust, (see Elemental-S, atmosphere)
Sulphur hexafluoride, SF_6, 48, 179
preparation for sulphur isotope analyses, 53–4
Sulphur-isotope abundances, 8–21
atmosphere, 16, 312–17
basic sills, 8 (Fig.)
biogenic H₂S, 17, 163–7
coil, 15 (Fig.), 383–5
Cu-Ni deposits, 89 (Fig.), 392–4, 398
Cu-Mo deposits, 89 (Fig.)
Cu-sandstone deposits, 90 (Fig.)
emissions, power plant, 400–1
evaporites, 5, 68–86, 83 (Fig.), 85
(fig.)
fly ash, 327
feathers, 301–3
fossil fuels, 15–16, 15 (Fig.), 95–116
geothermal areas, 245–7
H₂S in hydrocarbon deposits, 109–16
hair, 300–3
humans, 302–3
igneous rocks, 8 (Fig.)
lakes, 20, 199–218
native S, 18, 91–5
ocean, 14
oil shale, 391
organic-S, 67 (Fig.)
Pb-Zn deposits, 90 (Fig.), 373, 392–8
petroleum, 8 (Fig.), 15 (Fig.),
99–108, 331–43, 387–90
pyrite-polymetallic deposits, 88
(Fig.), 283, 392
rain, 8 (Fig.), 18–19, 150–2, 399
relation to metal pollution, 302
rivers, 20, 38, 225–9, 283
sea spray, 17
seas, 218–25
sedimentary sulphides, 8 (Fig.)
snow, 8 (Fig.) (see also rain)
sour gas processing emissions, 160
(Fig.)
spings, 247–9
stratosphere, 147
sulphide ores, 87–91, 90 (Fig.)
sulphur dioxide, 138–40, 400
terrestrial sulphate, 236 (fig.)
topographical effects, 295
urine, 301
volcanogenic, 8 (Fig.), 9, 93, 119–25
Sulphur-isotope fractionation, during atmospheric transformations, 143
exchange reactions, 4, 143
oxidation
elemental S, 279
sulphide, 12–14
sulphate reduction
assimilatory, 10, 285
chemical, 6, 32, 50–1
dissimilatory, 11
³⁵S-labelled sulphate, 190
Sulphur trioxide, 32, 49, 137, 332
Sulphuric acid from volcanic ash, 347
Sweden, 88, 240
Switzerland, 212
Tadzhik depression, USSR, 105
Tadzhikistan mountains, 151
Tar sands, 413
Tarnobzheg, Poland, 92
Tatarian, 82
Teepee Creek, Canada, 140
Tensleep formation, 111
Texas, 102
Thiocabill, 12
Thiocabillus denitrificans, 235
Thiocabillus concretivoros, 13
Thompson, Canada, 274
Tidal flats, 344–7
Timano-Pechora, 100
Tokyo, 150, 353–7
Topographical factors, 295
Transition state theory, 5
Triassic, 102, 244
Troilite, 65
Tunisia, 284 (Fig.), 286
Tuscany, Italy, 38
Typha latifolia, 293
Uinta Basin, Utah, 105
Unidirectional processes, 5, 12
United States of America, 88, 91, 102,
105, 108, 121, 146–7, 154–5, 158,
159–203, 215, 244–5, 274, 284, 332
Upper Silurian, 82
Urals, 88, 151
Urine, 300
Usnea scabrata, 297
USSR, 20, 81, 89, 91, 94, 105, 109,
111–13, 155, 200, 203, 217–24, 222,
273, 282–5, 284 (fig.), 326
Valleeyview, Canada, 275, 280, 320
Vegetation, 20, 142, 282–99
algae, 185–9
atmospheric monitoring, 142
benthic weeds, 185
C/S ratios, 282
emission of reduced-S, 297
marine, 183
salt crystals on leaves, 298
sulphide assimilation, 184, 188
sulphur dioxide
 exposure threshold, 290
uptake, 288, 290–5
sulphur dust incorporation, 325
sulphur-forms, 282–3
sulphur isotope, 283–99, 318–19
biological factors, 296
fractionation during emissions of reduced-S, 297
salt crystals on leaves, 298
topographical influence, 295
Zostera, 185, 189
Venezuela, 14
Venice, 150, 157, 160
Vistula, 228
Vladivostok, 150
Volcanoes
 activity classification, 121
ash, 120–1, 348
emissions, 16, 66
gases, 121–4
S-flux to atmosphere, 116–19
S-isotopes, 8–9, 119–25
total volcanic sulphur emitted to atmosphere, 124–5
Volcanogenic deposits, 93
Volga, 243
Volga-Urals, 110
Wawa, Canada, 212, 273
Whiskers, 300
Whitecourt, Canada, 140, 155, 204, 319
Wind River Basin, USA, 102, 110, 244
Wood Point, Australia, 379
Wind direction, effect on S-isotopes of SO₂, 139 (Fig.)
Yakutia, 150
Yellowstone, 245
Yudomski Sours event, 85
Zechstein, 82
Zhosaly Sopka, USSR, 283
Zinc sulphide ores (see Ore deposits)
Zooplankton, 146
Zostera, 185, 189