Contents

Preface

List of Workshop Participants and Contributors to the Volume

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Small Catchment Research</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Bedřich Moldan and Jiří Černý with contributions from all chapters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1.1 Natural Factors Influencing Small Catchments</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.1.2 Anthropogenic Factors Influencing Small Catchments</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.1.3 Events</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.1.4 Measurements in Small Catchments</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.1.5 Modelling</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.2 Small Catchment Programmes</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1.3 Important Scientific Findings</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1.3.1 Hydrology</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1.3.2 Atmospheric Deposition</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.3.3 Geology, Weathering and Erosion Processes</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.3.4 Soil Science</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1.3.5 Biology</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1.3.6 Forestry</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1.3.7 Element Budgets</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1.3.8 Short-, Medium- and Long-term Changes</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1.4 Manipulation Experiments</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1.5 Environmental Problems Studied in Small Catchments</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Considerations for the Future</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>1.7 Suggested Reading</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>1.8 References</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Hydrology</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Alan Jenkins, Norman E. Peters and Allan Rodhe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 Introduction</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2.2 The Catchment as a Study Unit</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2.3 Streamflow Generation Mechanisms</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Conceptual Approaches</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Mathematical Modelling</td>
<td>37</td>
</tr>
</tbody>
</table>
2.4 Methodology for Computing a Water Balance

2.4.1 Data Collection
- 2.4.1.1 Precipitation
- 2.4.1.2 Streamflow
- 2.4.1.3 Soil moisture
- 2.4.1.4 Groundwater

2.4.2 Tracer Hydrology
- 2.4.2.1 Stable isotopes of oxygen and hydrogen
- 2.4.2.2 Tritium
- 2.4.2.3 Chemical tracers
- 2.4.2.4 Temperature

2.5 Data Analysis Techniques
- 2.5.1 Hydrograph Analysis
- 2.5.2 Graphical Hydrograph Separation
- 2.5.3 Hydrograph Separation Using Tracers

2.6 Summary
2.7 Suggested Reading
2.8 References

3 Atmospheric Chemical Input to Small Catchments
Howard B. Ross and Steven E. Lindberg

3.1 Introduction
3.2 Factors Influencing Chemical Inputs
- 3.2.1 Wet Deposition
- 3.2.2 Cloud Deposition
- 3.2.3 Dry Deposition

3.3 Methods for the Quantification of Inputs to Small Catchments
- 3.3.1 Biomonitors
- 3.3.2 Foliar Extraction
- 3.3.3 Throughfall Methods
- 3.3.4 Mass Balance Studies of Sulphur

3.4 Conclusions
3.5 Suggested Reading
3.6 References

4 Weathering and Erosion Aspects of Small Catchment Research
Owen P. Bricker, Tomáš Pačes, Chris E. Johnson and Harald Sverdrup

4.1 Introduction
4.2 Role of Weathering and Erosion in Ecosystems
4.3 Weathering and Erosion Processes
- 4.3.1 Mechanisms and Kinetics
- 4.3.2 Modelling
 - 4.3.2.1 Weathering in biogeochemical models
CONTENTS

4.3.2.2 Detailed weathering models (PROFILE)
4.4 Methods Used to Determine Rates of Weathering and Erosion
4.4.1 Estimation of Weathering Rates
4.4.1.1 Discrepancy in mass balance
4.4.1.2 Indicator elements (Na, Si)
4.4.1.3 Soil profile depletion
4.4.1.4 Sr isotopes
4.4.1.5 Weathering bags
4.4.1.6 Laboratory experiments
4.4.2 Estimation of Erosion Rates
4.5 Summary
4.6 Suggested Reading
4.7 References

5 Soil and Soil Solution Chemistry
Jan Mulder and Malcolm S. Cresser
5.1 Soil Chemical Reactions
5.1.1 Introduction
5.1.2 Reactions Involving Inorganic Carbon
5.1.3 Reactions Involving Organic Carbon
5.1.4 Cation Exchange Reactions
5.1.5 Sulphate Transport and Adsorption
5.1.6 Phosphate Transport and Adsorption
5.1.7 Reactions Involving Aluminium
5.1.8 Chemical Weathering
5.1.9 Nitrogen Transport
5.2 Spatial and Temporal Variability of the Soil
5.2.1 Horizons: Vertical Variability in Chemistry
5.2.2 Soil Types: Lateral Patterns (Catena)
5.2.3 Temporal Patterns in Soil Chemistry
5.2.3.1 Soil solution
5.2.3.2 Soil solid phase
5.3 Anthropogenic Impact on Soils and Subsequent Recovery
5.3.1 Anthropogenic Impact and Resulting Changes
5.3.2 Recovery from Soil Disturbance
5.4 Methods in the Study of Soil and Soil Water
5.4.1 Soil Survey, Sampling and Analysis
5.4.1.1 Soil survey
5.4.2 Soil Water and Groundwater Collection
5.4.3 Chemical Analysis of Solutions
5.5 Summary
5.6 Further Reading
5.7 References
6 Biological Processes and Catchment Studies
Bengt J. Nihlgård, Wayne T. Swank and Myron J. Mitchell

6.1 Introduction
6.2 Long-term Changes in Catchments
 6.2.1 Palaeoecological Studies
 6.2.2 Long-term Monitoring
6.3 Primary Productivity and Nutrient Cycling in Catchments
6.4 Microbial Regulation in Catchments
 6.4.1 Nitrogen
 6.4.2 Sulphur
 6.4.3 Phosphorus
 6.4.4 Carbon
6.5 Within-stream Biological Factors
6.6 Herbivore Effects
 6.6.1 Insects
 6.6.2 Large Mammals
6.7 Conclusions and Recommendations
6.8 Suggested Reading
6.9 References

7 Hydrochemical Methods and Relationships for Study of Stream Output from Small Catchments
Raymond G. Semkin, Dean S. Jeffries and Thomas A. Clair

7.1 Basic Hydrochemical Concepts
 7.1.1 Purpose of Hydrochemical Investigations
 7.1.2 Streamwater Chemistry
 7.1.2.1 Dissolved substances
 7.1.2.2 Suspended substances
 7.1.2.3 Composite parameters
 7.1.3 Streamwater Chemistry Variability
 7.1.3.1 Temporal variability
 7.1.3.2 Spatial variability
 7.1.4 Stream Output from Catchments
 7.1.4.1 Sampling frequency
 7.1.4.2 Mass balance/loading calculations
7.2 Methods for Quantitative Observation
 7.2.1 Stream Discharge
 7.2.2 Suspended Sediment Sampling
 7.2.3 Dissolved Substances Sampling
7.3 Interpretation of Hydrochemical Data
7.4 Summary
7.5 Suggested Reading
7.6 References
CONTENTS

8 Element Budgets 189
 Jiří Černý, Michael F. Billett and Malcolm S. Cresser
 8.1 Introduction 189
 8.2 Input-Output Budgets 189
 8.3 Selection of Watersheds for Small Watershed Studies and Practical Considerations 193
 8.4 Development of Watershed Element Budgets 195
 8.4.1 Atmospheric Deposition and Throughfall Inputs 195
 8.4.2 Soil and Biomass Pools and Transfers 197
 8.4.3 Stream Export of Elements 198
 8.4.4 Other Fluxes 202
 8.5 Summary 202
 8.6 Suggested Reading 202
 8.7 References 203

9 Hydrologic Studies 207
 Norman E. Peters
 9.1 Introduction 207
 9.2 Runoff Characteristics 208
 9.2.1 Flow Duration 209
 9.2.2 Recession-rate Analysis 211
 9.2.3 Runoff Dynamics 214
 9.2.4 Water Budget 215
 9.2.5 Remote Sensing and Geographic Information Systems 217
 9.3 Tracer Hydrology/Mixing Models 218
 9.3.1 Natural and Artificial Tracers 218
 9.3.2 Hydrograph Separation 219
 9.4 Research Directions/Recommendations 223
 9.5 References 223

10 Sulphur 229
 Hans Hultberg, Helene ApSimon, Robbins M. Church, Peringe Grennfelt, Myron J. Mitchell, Filip Moldan and Howard B. Ross
 10.1 Introduction 229
 10.1.1 The Global Sulphur Cycle and its Disturbance by Man 229
 10.1.2 Sulphur in Ecosystems 231
 10.1.3 Sulphur Studies in Europe and North America 232
 10.2 Atmospheric Input to Catchments 233
 10.2.1 Chemical Forms and Mechanisms of Deposition 233
 10.2.2 Quantification of Sulphur Deposition 236
 10.2.3 Factors Influencing Sulphur Deposition 237
 10.2.4 Regional Dry Deposition 239
 10.3 Cycling in Soils 240
xii

CONTENTS

10.3.1 Adsorption/Desorption in Soils 240
10.3.2 Biomass Accumulation 240
10.3.3 Gaseous Emissions 241
10.3.4 Leaching of Nutrients 241
10.4 Acidification 242
10.4.1 Critical Loads 242
10.4.2 Modelling Soils and Streamwater Chemistry 244
10.4.3 Long-term Studies 245
10.5 Whole Ecosystem Manipulations 246
10.6 Summary and Research Recommendations 248
10.7 References 249

11 Nitrogen Cycling 255
Per Gundersen and Vladimir N. Bashkin

11.1 Introduction 255

11.2 Forested Catchments 256
11.2.1 Environmental Problems Related to Nitrogen 256
11.2.2 Nitrogen Saturation 257
11.2.3 Interactions in the Forest Nitrogen Cycle 258
11.2.4 Critical Parameters for Nitrogen Saturation 262
11.2.5 Elevated Nitrogen Leaching and its Causes 265
11.2.6 Denitrification and Nitrous Oxide Emissions 268
11.2.7 Conclusions and Research Recommendations 268

11.3 Agricultural Catchments 269
11.3.1 Crop Uptake and Accumulation 271
11.3.2 Export of Nitrogen 272
11.3.3 Leaching and Runoff 273
11.3.4 Mixed Catchments 275

11.4 Summary 276

11.5 References 277

12 Hydrochemical Studies 285
Nils Christophersen, Thomas A. Clair, Charles T. Driscoll,
Dean S. Jeffries, Colin Neal and Raymond G. Semkin

12.1 Introduction 285

12.2 Carbon Cycling and DOC 286
12.2.1 Carbon Budget for Hubbard Brook 286
12.2.2 Dissolved Organic Carbon at Two Sites in Nova Scotia 288

12.3 Episodic Changes in Streamwater Chemistry 289
12.3.1 Case Studies 289
12.3.2 The Importance of Flow Paths 292

12.4 Mathematical Models 293

12.5 Conclusions 295

12.6 References 295
15.2.3 Mining
15.2.4 Acidification
15.2.5 Heavy Metal Mobilization

15.3 Case Studies
15.3.1 The Chamela Watershed Project: a Study of the Structure and Functioning of a Tropical Deciduous Forest in West Mexico
15.3.2 Effects of Climate and Fire on Small Catchment Ecosystems in SE Venezuela
15.3.3 Effect of Diking on Small Catchment Ecosystems in Venezuelan Flooded Savannas
15.3.4 A Small Catchment Study in the Brazilian Tropics
15.3.5 Effect of Storm Events on Stream Chemistry in an Atlantic Brazilian Coastal Forest
15.3.6 Research on Erosion and Carbon Export in Small Catchments
15.3.7 Effects of Logging on Malaysian Rainforest

15.4 Constraints of the Small Catchment Studies in Latin America
15.4.1 Ecological Constraints
15.4.2 Technical and Socioeconomical Constraints

15.5 Conclusions and Recommendations
15.5.1 Small Catchments Modelling Versus Large Catchments
15.5.2 First Disturbance Testing
15.5.3 Awareness and Scientific Cooperation

15.6 References

16 Agricultural Impacts in the Northern Temperate Zone
Rein Ratsep, Bengt Nihlgård, Vladimir N. Bashkin, Pavel Blazka, Bridget Emmet, Jim Harris and Marek Kruk

16.1 Introduction
16.1.1 Agroecosystems and Catchment Studies

16.2 Soil Physical Management
16.2.1 Effect of Different Tillage Practices

16.3 Chemical Management
16.3.1 Main Nutrients: Nitrogen and Phosphorus
16.3.2 Pesticides

16.4 Biological Management

16.5 Water Management

16.6 Industrial Effects
16.6.1 Physical Disruption
16.6.2 Chemical Contamination

16.7 Landscape Planning and Optimization

16.8 Summary

16.9 References
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17 Small Catchment Research in the Evaluation and Development of</td>
<td></td>
</tr>
<tr>
<td>Forest Management Practices</td>
<td></td>
</tr>
<tr>
<td>Wayne T. Swank and Chris E. Johnson</td>
<td>383</td>
</tr>
<tr>
<td>17.1 Introduction</td>
<td>383</td>
</tr>
<tr>
<td>17.2 Historical Background</td>
<td>383</td>
</tr>
<tr>
<td>17.3 Conceptual Considerations</td>
<td>384</td>
</tr>
<tr>
<td>17.4 Select Examples of Approaches</td>
<td></td>
</tr>
<tr>
<td>17.4.1 Water Yield and Timing of Streamflow</td>
<td></td>
</tr>
<tr>
<td>17.4.1.1 General</td>
<td>386</td>
</tr>
<tr>
<td>17.4.1.2 Regional examples</td>
<td>387</td>
</tr>
<tr>
<td>17.4.1.3 Hydrologic models</td>
<td>390</td>
</tr>
<tr>
<td>17.4.1.4 Timing of streamflow</td>
<td>391</td>
</tr>
<tr>
<td>17.4.2 Water Quality</td>
<td></td>
</tr>
<tr>
<td>17.4.2.1 Sedimentation</td>
<td>392</td>
</tr>
<tr>
<td>17.4.2.2 Stream temperature</td>
<td>394</td>
</tr>
<tr>
<td>17.4.2.3 Dissolved nutrients</td>
<td>395</td>
</tr>
<tr>
<td>17.4.3 Element Cycling</td>
<td></td>
</tr>
<tr>
<td>17.4.3.1 Case study: Hubbard Brook</td>
<td>396</td>
</tr>
<tr>
<td>17.4.3.2 Factors influencing element export and depletion</td>
<td>398</td>
</tr>
<tr>
<td>17.4.3.3 Tropical vs. temperate systems</td>
<td>401</td>
</tr>
<tr>
<td>17.5 Research Needs and Opportunities</td>
<td>403</td>
</tr>
<tr>
<td>17.6 References</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>409</td>
</tr>
</tbody>
</table>